Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Prog ; 106(3): 368504231198935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37769294

RESUMEN

The purpose of this study was to establish the dose-response curves for biological dosimetry of the Dong Nam Institute of Radiological and Medical Sciences to monitor radiation exposure of local residents in the vicinity of the nuclear power plant. The blood samples of five healthy volunteers were irradiated with gamma ray, and each sample was divided equally for analysis of chromosomal aberrations by Giemsa staining and three-color fluorescence in situ hybridization painting of the triplet (chromosomes #1, #2, and #4). The results of chromosomal aberrations followed the Poisson distribution in all individual and averaged data which include inter-individual variation in radiation susceptibility. Cytogenetics Dose Estimate Software version 5.2 was used to fit the dose-response curve and to determine the coefficients of linear-quadratic equations. The goodness of fit of the curves and statistical significance of fitted α and ß-coefficients were confirmed in both Giemsa-based dicentric analysis and FISH-based translocation analysis. The coefficients calculated from the five-donor average data were almost identical in both of the analyses. We also present the results that the dose-response curve for dicentric chromosomes plus fragments could be more effective for dose estimation following low-dose radiation accidents.


Asunto(s)
Plantas de Energía Nuclear , Radiometría , Humanos , Hibridación Fluorescente in Situ , Radiometría/métodos , Aberraciones Cromosómicas , República de Corea
2.
Sci Rep ; 12(1): 22097, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543843

RESUMEN

The dicentric chromosome assay is the "gold standard" in biodosimetry for estimating radiation exposure. However, its large-scale deployment is limited owing to its time-consuming nature and requirement for expert reviewers. Therefore, a recently developed automated system was evaluated for the dicentric chromosome assay. A previously constructed deep learning-based automatic dose-estimation system (DLADES) was used to construct dose curves and calculate estimated doses. Blood samples from two donors were exposed to cobalt-60 gamma rays (0-4 Gy, 0.8 Gy/min). The DLADES efficiently identified monocentric and dicentric chromosomes but showed impaired recognition of complete cells with 46 chromosomes. We estimated the chromosome number of each "Accepted" sample in the DLADES and sorted similar-quality images by removing outliers using the 1.5IQR method. Eleven of the 12 data points followed Poisson distribution. Blind samples were prepared for each dose to verify the accuracy of the estimated dose generated by the curve. The estimated dose was calculated using Merkle's method. The actual dose for each sample was within the 95% confidence limits of the estimated dose. Sorting similar-quality images using chromosome numbers is crucial for the automated dicentric chromosome assay. We successfully constructed a dose-response curve and determined the estimated dose using the DLADES.


Asunto(s)
Aprendizaje Profundo , Radiometría , Humanos , Radiometría/métodos , Aberraciones Cromosómicas , Rayos gamma , Cromosomas Humanos/genética , Relación Dosis-Respuesta en la Radiación
3.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34884637

RESUMEN

The adverse effects of radiation are proportional to the total dose and dose rate. We aimed to investigate the effects of radiation dose rate on different organs in mice. The mice were subjected to low dose rate (LDR, ~3.4 mGy/h) and high dose rate (HDR, ~51 Gy/h) radiation. LDR radiation caused severe tissue toxicity, as observed in the histological analysis of testis. It adversely influenced sperm production, including sperm count and motility, and induced greater sperm abnormalities. The expression of markers of early stage spermatogonial stem cells, such as Plzf, c-Kit, and Oct4, decreased significantly after LDR irradiation, compared to that following exposure of HDR radiation, in qPCR analysis. The compositional ratios of all stages of spermatogonia and meiotic cells, except round spermatid, were considerably reduced by LDR in FACS analysis. Therefore, LDR radiation caused more adverse testicular damage than that by HDR radiation, contrary to the response observed in other organs. Therefore, the dose rate of radiation may have differential effects, depending on the organ; it is necessary to evaluate the effect of radiation in terms of radiation dose, dose rate, organ type, and other conditions.


Asunto(s)
Espermatogénesis/efectos de la radiación , Testículo/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Masculino , Ratones , Modelos Animales , Dosis de Radiación , Espermátides/citología , Espermátides/efectos de la radiación , Espermatogonias/citología , Espermatogonias/efectos de la radiación , Espermatozoides/citología , Espermatozoides/efectos de la radiación , Testículo/citología
4.
J Radiat Res ; 61(6): 895-902, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32930783

RESUMEN

In this study, we evaluated the effect of radiation dose on gonads during paediatric kidney nuclear medicine tests. Using Monte Carlo simulations, the distribution and effects of radiation were physically evaluated by displaying the distribution path of the source in the human body over time. In particular, the evaluation of doses in children, who are sensitive to radiation during nuclear medicine tests that use internal exposure among several types of medical exposures, was conducted to obtain data for the management of medical exposures. Our results indicated that under normal kidney function, the dose received by the target kidney was 0.430 mGy/mCi, which is ~6% higher than the dose suggested by the International Commission on Radiation Protection (ICRP). Furthermore, when kidney function was compromised, the dose estimated was 0.726 mGy/mCi, which is ~2% lower than the dose suggested by the ICRP. In the male and female gonads, namely the testicles and ovaries, the doses received were 0.359 mGy/mCi and 0.394 mGy/mCi, respectively, under normal kidney function. Similarly, under abnormal kidney function, the doses ranged from 0.187 to 0.353 mGy/mCi and 0.238 to 0.388 mGy/mCi in the male and female gonads, respectively.


Asunto(s)
Riñón/efectos de la radiación , Medicina Nuclear/métodos , Ovario/efectos de la radiación , Dosis de Radiación , Radiometría/métodos , Testículo/efectos de la radiación , Niño , Simulación por Computador , Femenino , Humanos , Pruebas de Función Renal , Cinética , Masculino , Método de Montecarlo
5.
Appl Radiat Isot ; 128: 148-153, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28710935

RESUMEN

The isomeric yield ratios of 99m,gRh, 101m,ggRh, and 102m,gRh isomeric pairs produced from the natPd(γ,pxn) reactions were measured with the bremsstrahlung end-point energies of 50-, 55-, 60-, 65-, and 70-MeV at the 100MeV electron linac of the Pohang Accelerator Laboratory, Korea. The measurements were carried out with the activation method in combination with off-line γ-ray spectrometry. In order to improve the accuracy of the activity measurements, the separation of the overlapping γ-rays and the necessary corrections for the counting losses were made. The new experimental results are compared with the theoretical values of the TALYS-1.6 code.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...